ENUNCIADO. Sea el sistema de ecuaciones lineales
$$\left\{\begin{matrix}
x &+ &y &+& z& = & 1 \\
x &- &y &-& z& = & 0 \\
x &+ &y &+& m\,z& = & -1 \\
\end{matrix}\right.$$
Se pide:
a) Analizar el sistema en función de los valores que tome el parámetro $m \in \mathbb{R}$
b) Resolver el sistema para $m:=-1$
SOLUCIÓN.
a)
Reduciendo el sistema por Gauss ( $f_1-f_2 \rightarrow f_2$; $f_1-f_3 \rightarrow f_3$ ) obtenemos el siguiente sistema equivalente al original $$\left\{\begin{matrix}
x &+ &y &+& z& = & 1 \\
& &2y &+& 2z& = & 1 \\
& & &+& (1-m)\,z& = & -1 \\
\end{matrix}\right.$$
de donde deducimos que en el caso de que $1-m$ sea cero ( y por tanto, $m$ sea igual a $1$ ), el sistema es incompatible ya que se llega así a una contradicción ( $0 = -1$ ); por lo tanto, el sistema es incompatible para $m=1$. Para cualquier otro valor de $m$ las tres ecuaciones son linelamente independientes: el rango del sistema es $3$, valor que es igual al número de incógnitas; así, pues, por el Teorema de Rouché-Fröbenius, el sistema es compatible determinado para todo valor de $m$ distinto de $1$.
b)
Teniendo en cuenta, ahora, el valor de $m$ ha de ser ( condición del enunciado ) igual a $-1$, el sistema de ecuaciones a resolver ( ya reducido ) es $$\left\{\begin{matrix}
x &+ &y &+& z& = & 1 \\
& &2y &+& 2z& = & 1 \\
& & &+& 2z& = & -1 \\
\end{matrix}\right.$$
que, como ya se ha demostrado, tiene solución única ( por ser $m \neq 1 $ ). Entonces, despejando $z$ de la última ecuación, obtenemos $z=-\dfrac{1}{2}$; sustituyendo este valor en la segunda ecuación y despejando $y$, llegamos a $y=1$; y, finalmente, sustituyendo los valores de $x$ e $y$, que hemos encontrado en los dos pasos anteriores, en la primera ecuación, y despejando $x$, vemos que $x=\dfrac{1}{2}$.
$\square$
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios