martes, 25 de marzo de 2014

Resumen de las reglas de derivación




















$f(x)$

$f^{'}(x)$

$c \;\; \text{(constant)}$

$0$

$x^k \quad , k \in \mathbb{R} \; \text{, constant)}$

$k\cdot x^{k-1}$

$c\cdot u(x)$

$c\cdot u^{'}(x)$

$u(x)+v(x)$

$u^{'}(x)+v^{'}(x)$

$(u \circ v )(x)$

$u_{v}^{'}\cdot(v^{'}(x)$

$\sin{\big(u(x)\big)}$

$\cos{\big(u(x)\big)}\cdot u^{'}(x)$

$\tan(u(x))$

$\displaystyle \dfrac{1}{\cos^{2}\big(x\big)}\cdot u^{'}(x)$

$e^{u(x)}$

$e^{u(x)}\cdot u^{'}(x)$

$\ln{u(x)}$

$\displaystyle \dfrac{1}{u(x)}\cdot u^{'}(x)$

$u(x) \cdot v(x)$

$u^{'}(x)\cdot v(x) + v^{'}(x)\cdot u(x)$

$\displaystyle \dfrac{u(x)}{v(x)}$

$\displaystyle \dfrac{u^{'}(x)\cdot v(x) - v^{'}(x)\cdot u(x)}{\big(v(x)\big)^2}$

$\big(u(x)\big)^{v(x)}$

$ \displaystyle\big(u(x)\big)^{v(x)}\cdot \Big(\dfrac{u^{'}(x)}{u(x)}\cdot v(x) + v^{'}(x) \cdot \ln{\big(u(x)\big)} \Big)$

$\arcsin{\big(u(x)\big)}$

$ \displaystyle \dfrac{1}{\sqrt{1-\big(u(x)\big)^2}}\cdot \big(u(x)\big)^{'}$

$\arccos{\big(u(x)\big)}$

$ \displaystyle -\dfrac{1}{\sqrt{1-\big(u(x)\big)^2}}\cdot \big(u(x)\big)^{'}$

$\arctan{\big(u(x)\big)}$

$ \displaystyle \dfrac{1}{1+\big(u(x)\big)^2}\cdot \big(u(x)\big)^{'}$

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios