$f(x)$ | $f^{'}(x)$ |
$c \;\; \text{(constant)}$ | $0$ |
$x^k \quad , k \in \mathbb{R} \; \text{, constant)}$ | $k\cdot x^{k-1}$ |
$c\cdot u(x)$ | $c\cdot u^{'}(x)$ |
$u(x)+v(x)$ | $u^{'}(x)+v^{'}(x)$ |
$(u \circ v )(x)$ | $u_{v}^{'}\cdot(v^{'}(x)$ |
$\sin{\big(u(x)\big)}$ | $\cos{\big(u(x)\big)}\cdot u^{'}(x)$ |
$\tan(u(x))$ | $\displaystyle \dfrac{1}{\cos^{2}\big(x\big)}\cdot u^{'}(x)$ |
$e^{u(x)}$ | $e^{u(x)}\cdot u^{'}(x)$ |
$\ln{u(x)}$ | $\displaystyle \dfrac{1}{u(x)}\cdot u^{'}(x)$ |
$u(x) \cdot v(x)$ | $u^{'}(x)\cdot v(x) + v^{'}(x)\cdot u(x)$ |
$\displaystyle \dfrac{u(x)}{v(x)}$ | $\displaystyle \dfrac{u^{'}(x)\cdot v(x) - v^{'}(x)\cdot u(x)}{\big(v(x)\big)^2}$ |
$\big(u(x)\big)^{v(x)}$ | $ \displaystyle\big(u(x)\big)^{v(x)}\cdot \Big(\dfrac{u^{'}(x)}{u(x)}\cdot v(x) + v^{'}(x) \cdot \ln{\big(u(x)\big)} \Big)$ |
$\arcsin{\big(u(x)\big)}$ | $ \displaystyle \dfrac{1}{\sqrt{1-\big(u(x)\big)^2}}\cdot \big(u(x)\big)^{'}$ |
$\arccos{\big(u(x)\big)}$ | $ \displaystyle -\dfrac{1}{\sqrt{1-\big(u(x)\big)^2}}\cdot \big(u(x)\big)^{'}$ |
$\arctan{\big(u(x)\big)}$ | $ \displaystyle \dfrac{1}{1+\big(u(x)\big)^2}\cdot \big(u(x)\big)^{'}$ |
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios