Loading web-font TeX/Math/Italic

domingo, 30 de marzo de 2014

Aplicación directa de la definición de derivada de una función en un punto

Enunciado:
Calcular el valor de la derivada de la función y=x^2 en el punto de abscisa x=3, aplicando directamente la definición de derivada de una función en un punto, es decir, sin usar las reglas de derivación que, precisamente, se deducen para un punto genérico y con las cuales podemos derivar de manera rápida y eficaz.

Resolución:
De la definición de derivada de una función en un punto dado P, de abscisa x_P, podemos escribir:
f'(3)=\displaystyle \lim_{\Delta x \rightarrow 0}\,\dfrac{(3+\Delta x)^2-3^2}{\Delta x}

  \displaystyle=\lim_{\Delta x \rightarrow 0}\,\dfrac{3^2+2\cdot 3\,\Delta x-(\Delta x)^2}{\Delta x}

  \displaystyle=\lim_{\Delta x \rightarrow 0}\,\dfrac{ 6\,\Delta x-(\Delta x)^2}{\Delta x}

  \displaystyle=\lim_{\Delta x \rightarrow 0}\,\Delta x \big(\dfrac{ 6\,-\Delta x}{\Delta x}\big)

  \displaystyle=\lim_{\Delta x \rightarrow 0}\,\dfrac{\Delta x}{\Delta x}\, (6\,-\Delta x)

  \displaystyle=\lim_{\Delta x \rightarrow 0}\, 1 \cdot ( 6\,-\Delta x)

  \displaystyle=\lim_{\Delta x \rightarrow 0}\, ( 6\,-\Delta x)

  \displaystyle=\lim_{\Delta x \rightarrow 0}\, 6-\lim_{\Delta x \rightarrow 0}\, \Delta x

  \displaystyle=6-0

  \displaystyle=6

\blacksquare

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios