Loading web-font TeX/Caligraphic/Regular

martes, 14 de junio de 2016

Un ejercicio de programación lineal

ENUNCIADO. Sea \mathcal{R} la región del plano definida por: \left\{\begin{matrix}x&+&y&\le&5\\ -x&+&y&\le&3\\ \dfrac{1}{2}\,x&-&y&\le&-2 \end{matrix}\right.

Se pide:
a) Representar la región \mathcal{R} y calcular las coordenadas de sus vértices
b) Obténganse los valores máximo y mínimo de la función f(x,y)=2\,x+y en la región \mathcal{R}, indicando los puntos de \mathcal{R} en los que se alcanzan dichos valores máximo y mínimo.

SOLUCIÓN.

a)
Región factible:

\mathcal{R}:\left\{\begin{matrix} y+x\le 5 \\ y-x \le 3 \\ \dfrac{1}{2}\,x-y \le -2\end{matrix}\right. \sim \left\{\begin{matrix} y \le -x+5\\ y \le x+3 \\ y \ge \dfrac{1}{2}\,x+2 \end{matrix}\right. \quad \quad (1)
Las rectas delimitadoras de la región factible son, por tanto, \left\{\begin{matrix} r:y=-x+5\\ s:y=x+3\\ t:y=\dfrac{1}{2}\,x+2\end{matrix}\right. Analizando el sentido de las desigualdades de (1) obtenemos el triángulo de la figura como polígono ( convexo ) que corresponde a la región factible. Vamos ahora a calcular las coordenadas de los vértices A,B y C.

A=s \cap t luego A: \left\{\begin{matrix} y=x+3 \\ y=\dfrac{1}{2}\,x+2\end{matrix}\right. que tiene como solución el punto de coordenadas (1,2)
B=r \cap t luego B: \left\{\begin{matrix} y=-x+5 \\ y=\dfrac{1}{2}\,x+2\end{matrix}\right. que tiene como solución el punto de coordenadas (2,3)
C=s \cap r luego C: \left\{\begin{matrix} y=x+3 \\ y=-x+5\end{matrix}\right. que tiene como solución el punto de coordenadas (1,4)


b)
La región factible ( convexa ) es, en este caso, acotada superior e inferiormente, por lo que podemos asegurar que existe máximo y que existe mínimo. Veamos cuáles son y para qué puntos de la región factible se dan.

La función objetivo f(x,y)=2x+y podemos expresarla de la forma y=-2x+k, donde la ordenada en el origen k representa los valores k\equiv f(x,y) de cada una de las rectas del haz de rectas paralelas ( familia de rectas de la función objetivo ). Así, los puntos de la región factible que estén sobre la recta ( o las rectas ) que tengan un valor de k máximo ( respectivamente, mínimo ) corresponden a los puntos donde la función alcanza el máximo ( respectivamente, el mínimo ).

Tal como se puede apreciar en la figura, el máximo de la función objetivo f(x,y) se alcanza en el punto B(2,3) y por tanto su valor es igual a f(2,3)=2\cdot 2+3=7; y el mínimo de f(x,y) se alcanza en el punto A(-2,1) y su valor es igual a f(-2,1)=2\cdot (-2)+1=-3

\square

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios