La producción diaria de cemento, media en toneladas, de una factoría cementera se puede aproximar por una variable aleatoria con distribución normal de media $\mu$ desconocida y desviación típica $\sigma=9$ toneladas.
a) Determínese el tamaño mínimo de una muestra aleatoria simple para que el correspondiente intervalo de confianza al $95\,\%$ para $\mu$ tenga una amplitud a lo sumo de $2$ toneladas
b) Se toman los datos de producción de $16$ días escogidos al azar. Calcúlese la probabilidad de que la media de las producciones obtenidas, $\bar{X}$, sea menor o igual que $197,5$ toneladas si sabemos que $\mu=202$ toneladas
SOLUCIÓN.
a)
Denotemos por $X$ a la variable aleatoria de la población "masa de la producción diaria". Sabemos que $X \sim N(\mu\,,\,9)$, entonces un intervalo de confianza para la estimación de la media de la población $\mu$ es $(\bar{x}-E\,,\,\bar{x}+E)$, donde $\bar{x}=2$ toneladas y $E$ la amplitud de dicho intervalo ( corresponde al máximo error cometido en la estimación ), y viene dado por $E=z_{\alpha/2}\cdot \dfrac{\sigma}{\sqrt{n}}$.
Como el nivel de confianza es $1-\alpha=0'95$, entonces $\alpha=0'05$ y por tanto $\alpha/2=0'025$; podemos pues escribir: $P\{Z \le z_{\alpha/2}\}=1-0'025=0'975$, por lo que consultando en las tablas de la distribución de probabilidad $N(0\,,\,1)$ encontramos el siguiente valor de la abscisa crítica: $z_{\alpha/2} \approx 1'96$
Con todo esto, podemos calcular el valor mínimo de $n$, ya que si $E=2$, entonces $2=1'96 \cdot \dfrac{9}{\sqrt{n}}$, de donde se desprende que el valor (mínimo) de $n$ es igual a $n \ge (\dfrac{9\cdot 1'96}{2})^2 = 78$
b)
Procedemos a calcular ahora $P\{\bar{X}\} \le 197'5$, teniendo en cuenta que, por el Teorema del Límite Central, $\bar{X}$ sigue una distribución normal $N(\mu\,,\,\dfrac{\sigma}{\sqrt{n}})$. Disponemos de los siguientes datos: $\mu=202$ toneladas ( media de la población ), y $n=16$ días ( tamaño de la muestra ).
$P\{\bar{X}\le 197'5\}\overset{\text{tipificando la variable}}{=}P\{Z\le-2\}=P\{Z\ge 2 \}=1-P\{Z \prec 2\}=$
    $\overset{\text{tablas}\,N(0,1)}{=}1-0'9772=0'0228$
$\square$
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios