miércoles, 22 de abril de 2015

Teoremas de continuidad y derivabilidad

TEOREMAS BÁSICOS SOBRE CONTINUIDAD

Teorema de Weierstrass. Una función real de variable real, continua en un intervalo cerrado y acotado, entonces dicha función está acotada y alcanza la menor de las cotas superiores ( supremo ) y la mayor de las cotas inferiores ( ínfimo ) dentro del mismo, es decir, alcanza los valores máximo y mínimo en puntos de dicho intervalo.

Nota: Por máximo y mínimo no debe entenderse necesariamente que éstos sean máximos y mínimos relativos.

Teorema de Bolzano. Sea una función real de variable real, continua en un intervalo cerrado, y tal que en sus extremos los valores de función son de signos opuestos, entonces existe por lo menos una raíz de la función que pertenece a dicho intervalo.

Corolario (Teorema de los valores intermedios)
Con las premisas del teorema de Bolzano, se tiene que para cualquier $f(a) \le k \le f(b)$ existe al menos un valor $c \in [a,b]$ tal que $f(c)=k$

TEOREMAS BÁSICOS SOBRE DERIVABILIDAD DE FUNCIONES CONTINUAS EN UN CIERTO INTERVALO

Teorema de Rolle. Sea una función real de variable real, continua en un intervalo cerrado $[a,b]$ y derivable en $(a,b)$; entonces, si $f(a)=f(b)$ existe por lo menos un punto $c \in (a,b)$ tal que $f'(c)=0$.

Teorema del valor medio ( o de Lagrange ). Sea una función real de variable real, continua en un intervalo cerrado $[a,b]$ y derivable en $(a,b)$; entonces existe al menos un punto $c \in (a,b)$ tal que la pendiente de la recta tangente a la gráfica de la función en este punto es igual a la pendiente de la recta secante que pasa por los puntos $(a,f(a))$ y $(b,f(b))$, esto es, $f'(c)=\dfrac{f(b)-f(a)}{b-a}$

Teorema de Cauchy. Sean dos funciones reales de variable real, $f$ y $g$, continuas en un intervalo cerrado $[a,b]$ y derivables en $(a,b)$; entonces existe al menos un punto $c \in (a,b)$ tal que $\dfrac{f'(c)}{g'(c)}=\dfrac{f(b)-f(a)}{g(b)-g(a)}$

Observación. Una consecuencia de este teorema es la regla de L'Hôpital, muy útil para trabajar con indeterminaciones en el cálculo de límites:
i) Si $\displaystyle \lim_{x \rightarrow a}\,f(x)=\displaystyle \lim_{x \rightarrow a}\,g(x)=0$ y existe $\displaystyle \lim_{x \rightarrow a}\,\dfrac{f'(x)}{g'(x)}=b$, entonces $$\displaystyle \lim_{x \rightarrow a}\,\dfrac{f(x)}{g(x)}=\lim_{x \rightarrow a}\,\dfrac{f'(x)}{g'(x)}=b$$

ii) Si $\displaystyle \lim_{x \rightarrow a}\,f(x)=\displaystyle \lim_{x \rightarrow a}\,g(x)=\infty$ y existe $\displaystyle \lim_{x \rightarrow a}\,\dfrac{f'(x)}{g'(x)}=b$, entonces $$\displaystyle \lim_{x \rightarrow a}\,\dfrac{f(x)}{g(x)}=\lim_{x \rightarrow a}\,\dfrac{f'(x)}{g'(x)}=b$$

$\square$

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios