Processing math: 100%

lunes, 28 de septiembre de 2020

Tarea de progresión número 2 de la semana del 28 de septiembre al 4 de octubre

Ejercicio número 20, apartado (a), de la página 24 del libro base

ENUNCIADO. Clasifica y resuelve el siguiente sistema de ecuaciones lineales por el método de Gauss
\left\{ \begin{matrix}x&+&y&+&z&=&2 \\ x&-&y&+&2z&=&1\\ 2x&+&y&+&2z&=&0\end{matrix}\right.

SOLUCIÓN.
\left\{ \begin{matrix}x&+&y&+&z&=&2 \\ x&-&y&+&2z&=&1\\ 2x&+&y&+&2z&=&0\end{matrix}\right.\quad \begin{matrix}\\ (-1)\cdot e_1+e_2 \rightarrow e_2 \\ (-1)\cdot e_1+e_3 \rightarrow e_3 \end{matrix} \quad \quad \sim

\left\{ \begin{matrix}x&+&y&+&z&=&2 \\ &&-2y&+&z&=&-11\\ &&3y&-&2z&=&-2\end{matrix}\right.\quad \begin{matrix}\\ \\ 3\, e_1+2\,e_3 \rightarrow e_3 \end{matrix} \quad \quad \sim

\left\{ \begin{matrix}x&+&y&+&z&=&2 \\ &&-2y&+&z&=&-11\\ &&&&-z&=&-7\end{matrix}\right.

Ya reducido el sistema por Gauss, vemos que el rango del sistema es 3, pues las tres ecuaciones son independientes; y como el número de incógnitas coincide con el rango del sistema, éste es compatible y determinado. Veamos ahora cuál es la solución. De la tercera ecuación, deducimos que z=7. Sustituyendo este resultado en la segunda ecuación y despejando la segunda incógnita vemos que -2y+7=-1 \Rightarrow y=4. Finalmente, sustituyendo estos dos resultados en la primera ecuación, x+7+4=2 \Rightarrow x=-9
\square

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios